## Poster # 162 Project ER-0630



# Demonstration/Validation of the Snap Sampler Passive Ground Water Sampling Device for Inorganic Analytes

Louise V. Parker, Nathan Mulherin, & Gordon Gooch (ERDC-CRREL) & Bill Major (NFESC), Richard Willey (IUS EPA Region 1),Tom Imbrigiotta (NJ USGS), Dr. Jacob Gibs (NJ USGS), & Donald Gronstal (US AFRPA)

Louise.V.Parker@erdc.usace.army.mil 603-646-4393

Objective

Demonstrate that the Snap Sampler can provide technically defensible analytical data for a wide spectrum of analytes of interest to DoD

Demonstrate the utility and potential cost savings of this technology

## Technical Approach

1) Complete proof-of-concept studies (i.e., lab studies) Previous studies demonstrated applicability of sampler for explosives & VOCs (Parker & Mulherin 2007) Needed proof for other analytes of interest i.e. metals. perchlorate & natural attenuation parameters

#### 2) Field studies/demonstrations

Compare analyte concentrations in samples taken with
 Snap Sampler
 Low-flow purging & sampling
 Diffusion sampler
 - Passive Diffusion Bag (PDB) sampler
 - Regenerated Cellulose (RGC) sampler
 Including diffusion samplers allows us to examine

role of colloidal-borne contaminants
• Wide spectrum of analytes of interest to DoD

VOCs, explosives, metals, & natural attenuation parameters

#### Five DoD test sites

#### √ Former Pease AFB, NH (US EPA Region 1 site) Primarily Arsenic & cations

- Port Hueneme, CA (NETTS site) Light hydrocarbon spills (MTBE)
- Joliet Army Ammunition Plant & Savanna Army Ammunition Depot, IL Explosives
- Former McClellan Air Force Base, CA VOCs (1,4-dioxane), metals (Cr +6)

- Longhorn Army Ammunition Plant, TX Perchlorate

## Demonstration at Former Pease AFB

Location: Newington & Portsmouth, NH On a peninsula surrounded by Great Bay, Little Bay & the Piscataqua River Geology: Unconsolidated units: Fill, Upper Sand, Marine Clay & Silt, Lower Sand, & Glacial Till

Bedrock: Kittery or Elliot formation Monitoring wells used in the study: Eight 4-In. diameter PVC wells Six 10-ft screens, one 5-ft screen, two 15-ft screens Bottom of wells ranged from 13' to 60' bgs



Area 32 Building 113 UST 3 overburden wells 3 bedrock wells

Top of screens were 2' to 35' below the water table



#### Flow patterns in wells

Ambient Conditions No vertical flow in 7 wells

of upper & lower zones

Very slight downward flow in only well with a 5' screen Pumped Conditions Nearly equivalent contributions from upper & lower zones in 2 wells

B-04

Well Sc

Three (of 4) bedrock wells showed preferential flow Three wells had significant contributions from shallow portion of well screen (including 2 bedrock wells)

One (bedrock) well had significant contributions from deeper zone

#### Analyte stratification in wells under ambient flow Concentration (mg/L)

| Well    | Depth   | As    | Ca  | Fe  | Mg  |
|---------|---------|-------|-----|-----|-----|
| 13-5045 | shallow | 0.15  | 67  | 17  | 11  |
|         | deep    | 0.14  | 61  | 17  | 12  |
| 13-6095 | shallow | 0.140 | 29  | 7.9 | 6.3 |
|         | deep    | 0.065 | 28  | 3.7 | 5.9 |
| 32-5020 | shallow | 0.15  | 190 | 9.8 | 44  |
|         | deep    | 0.25  | 230 | 160 | 82  |
| 32-6008 | shallow | 0.066 | 65  | 1.5 | 24  |
|         | deep    | 0.057 | 69  | 1.2 | 24  |
| 32-6064 | shallow | 0.11  | 150 | 2.6 | 42  |
|         | deep    | 0.03  | 140 | 0.2 | 40  |
| 32-6135 | shallow | 0.022 | 3.7 | 2.1 | 1.6 |
|         | deen    | 0.021 | 45  | 29  | 16  |

Samples from well 32-5020

concentrations in wells Differences in concentrations in samples from well 32-5020

were due to differences in turbidity Based on data, we predict that there will be little difference in

analyte concentrations in low-flow & Snap Sampler samples

# Experimental Methods for Field Demonstration



| Experimental    | Methods continued                             |
|-----------------|-----------------------------------------------|
| Sampling order  |                                               |
| First two wells | (32-6064, 32-5020)                            |
| Snap (I         | eft in well), RGC, & low-flow, & recover Snap |

However turbidity in wells was a problem All remaining wells Snap (left in well), low-flow, RGC, & recover Snap Chemical Analyses EPA Method 6020B, ICP/MS

## Data Analyses

For each analyte, concentrations in Snap Sampler were compared with concentrations in the low-flow samples & RGC samples

Both filtered & unfiltered samples were compared with the RGC samples

## Statistical Analyses

Repeated Measures ANOVA (RM-ANOVA) test for normally distributed data with homogeneous variances or Freidman RM-ANOVA test (non-parametric)

### Results from demonstration



#### Concentration Ca (mg/L) in each well- unfiltered samples

| Well #  | Low-flow | RGC              | Snap        |
|---------|----------|------------------|-------------|
| 13-5045 | 72       | 71               | 66          |
| 13-6095 | 42       | 43               | 41          |
| 32-5020 | 230      | 250              | 190         |
| 32-5020 | 150      | 130              | 150         |
| 32-5031 | 75       | 86               | 97          |
| 32-5076 | 58       | 58               | 53          |
| 32-6008 | 98       | 98               | 100         |
| 32-6064 | 170      | 170              | 180         |
| 32-6064 | 110      | 110              | 110         |
| 32-6135 | 4.3      | 4.4              | 5.1         |
| Mean    | 101ª     | 102 <sup>a</sup> | <b>99</b> ª |
|         |          |                  |             |

No statistically significant difference between mean values with same letter

#### Results for Unfiltered Low-Flow & Snap Samples vs. RGC Samples

|         |          | Mean Conc. (mg/L) for 10 sampling events |        |                        |  |  |
|---------|----------|------------------------------------------|--------|------------------------|--|--|
|         | Range    | Unfiltered                               |        | Unfiltered             |  |  |
| Analyte | % RSD*   | Low-flow                                 | RGC    | Snap                   |  |  |
| As      | 0-3.8%   | 0.086°                                   | 0.090° | 0.10°                  |  |  |
| Ca      | 0-4.9%   | 101°                                     | 102°   | 99°                    |  |  |
| Fe      | 0-12%    | 3.8°                                     | 4.2°   | 7.4 <sup>d</sup>       |  |  |
| Mg      | 0%       | 27°                                      | 27°    | 27°                    |  |  |
| Mn      | 2.7-5.7% | 1.8°                                     | 1.9°   | 1.9°                   |  |  |
| к       | 3.1-6.4% | 6.7 <sup>c</sup>                         | 6.7°   | 7.0 <sup>c</sup>       |  |  |
| Na      | 2.0-10%  | 77°                                      | 68°    | 66 <sup>c</sup>        |  |  |
|         |          |                                          |        | * For field duplicates |  |  |

No statistically significant difference between mean values with same letter

Findings for unfiltered samples

No statistically significant difference between concentrations in Snap Sampler & low-flow samples, with exception of Fe No statistically significant difference between concentrations in RGC

& low-flow samples Pore size of RGC sampler (0.002μ) would exclude all but smallest of colloids

Would expect a lower conc. of analytes if colloidal transport was involved Therefore, we concluded that colloidal transport of these analytes is not an important mechanism at this site

#### Results for filtered Low-Flow and Snap Sampler Samples vs. RGC Samples

|                      |                                    | Mean Conc. (mg/L) for 10 events            |                    |                                               |
|----------------------|------------------------------------|--------------------------------------------|--------------------|-----------------------------------------------|
| <u>Analyte</u><br>As | Range of<br><u>% RSD*</u><br>0-2.6 | Filtered<br>Low flow<br>0.055 <sup>a</sup> | RGC<br>0.090b      | Filtered<br><u>Snap</u><br>0.045 <sup>a</sup> |
| Ca                   | 1.7-5.1                            | 100ª                                       | 102ª               | 103 <sup>a</sup>                              |
| Fe                   | 0                                  | 1.1ª                                       | 4.2 <sup>b</sup>   | 1.2ª                                          |
| Mg                   | 4.4-9.3                            | 27ª                                        | 27ª                | 27ª                                           |
| Mn                   | 1.8-3.3                            | 1.9ª                                       | 1.9ª               | 1.9ª                                          |
| к                    | 4.0-4.4                            | 6.8ª                                       | 6.7ª               | 6.7ª                                          |
| Na                   | 0-11                               | 74 <sup>a</sup>                            | 68⁵<br>*For lab di | 69 <sup>a,b</sup><br>uplicates                |

#### Findings for filtered samples

No statistically significant difference between concentrations in Snap Sampler& low-flow samples

No statistically significant difference between concentrations in RGC & low-flow samples, with the exception of As, Fe, & Na Believe these differences are due to how samples were handled

Low-flow & Snap Sampler samplers were filtered in lab This gave too much time for oxidation/precipitation reactions to

This gave too much time for oxidation/precipitation reactions to occur with Fe, & the As was then co-precipitated by iron oxides

# Conclusions

Snap Sampler shown to be able to recover equivalent concentrations of inorganic analytes vs. those recovered using low-flow sampling

True for both filtered and unfiltered samples.

with possible exception of unfiltered Fe

True for both bedrock and overburden wells

## What is next?

Former Pease AFB √ Former McClellan AFB

Analytes include VOCs (1,4-dioxane) & metals (Cr 6+) Port Hueneme Light hydrocarbons (MTBE) Longhorn Army Ammunition Plant (AAP) Perchlorate

Joliet Army Ammunition Plant & Savanna Army Ammunition Depot, IL Explosives

Where can I find additional information on passive sampling?



## References

Parker, L. V., and N.D. Mulherin. 2007. Evaluation of the Snap Sampler for sampling ground water monitoring wells for VOCs and explosives. US Army Engineer Research & Development Center Cold Regions Research & Engineering Laboratory Technical Report <u>ERDCORREL TR-07-14</u>

### Acknowledgments

ESTCP: Dr. Jeffery Marqusee (ESTCP Director & SERDP Technical Director) & Dr. Andrea Leeson (Environmental Program Manager SERDP/ESTCP) Chemical Analyses: Eastern Analytical Inc.

Pease AFB: Michael Dailey (EPA Remedial Project Manager), Marty Mistretta (Site Manager URS Corp.), Robert Strainge (USAFRPA Environmental Coordinator)